If it's not what You are looking for type in the equation solver your own equation and let us solve it.
0=-16x^2-40x+328
We move all terms to the left:
0-(-16x^2-40x+328)=0
We add all the numbers together, and all the variables
-(-16x^2-40x+328)=0
We get rid of parentheses
16x^2+40x-328=0
a = 16; b = 40; c = -328;
Δ = b2-4ac
Δ = 402-4·16·(-328)
Δ = 22592
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{22592}=\sqrt{64*353}=\sqrt{64}*\sqrt{353}=8\sqrt{353}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(40)-8\sqrt{353}}{2*16}=\frac{-40-8\sqrt{353}}{32} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(40)+8\sqrt{353}}{2*16}=\frac{-40+8\sqrt{353}}{32} $
| 363=3f2 | | 17=26u-5 | | -4(6h-8)=-27 | | -2(p+-1)+-1=7 | | 3(2-x)=32 | | d-(417)=427 | | -8=x90-7 | | 18=3(6a+7) | | (s-8)2=12 | | c=-220/22 | | 12x-7+5x=8(2x-1)+x-8 | | -9=x-6x | | 10=5+91a | | 8-(4+x)=5(x+6)-2 | | m-(48)=57 | | 10=4v+–2 | | 9a+7=72 | | 4=y+13/4 | | 4w+2w2+10=16 | | 4u-6=34 | | 10c+3=7c+8 | | w+(-2)=5 | | 63n=59 | | 44=-7a+2 | | 4(x+3)^2/3=32 | | -1=t3 | | 3(c+2)2=362 | | 33s=195 | | -1(-8x-10)-4=12(x+7)-122 | | 1275/x+15=0.20 | | 120x+225+16x²=0 | | (5+u)2=289 |